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A fossil-calibrated relaxed clock for Ephedra indicates an Oligocene
age for the divergence of Asian and New World clades and Miocene
dispersal into South America
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Abstract  Ephedra comprises approximately 50 species, which are roughly equally distributed between the Old and
New World deserts, but not in the intervening regions (amphitropical range). Great heterogeneity in the substitution
rates of Gnetales (Ephedra, Gnetum, and Welwitschia) has made it difficult to infer the ages of the major divergence
events in Ephedra, such as the timing of the Beringian disjunction in the genus and the entry into South America.
Here, we use data from as many Gnetales species and genes as available from GenBank and from a recent study
to investigate the timing of the major divergence events. Because of the tradeoff between the amount of missing
data and taxon/gene sampling, we reduced the initial matrix of 265 accessions and 12 loci to 95 accessions and
10 loci, and further to 42 species (and 7736 aligned nucleotides) to achieve stationary distributions in the Bayesian
molecular clock runs. Results from a relaxed clock with an uncorrelated rates model and fossil-based calibration
reveal that New World species are monophyletic and diverged from their mostly Asian sister clade some 30 mya,
fitting with many other Beringian disjunctions. The split between the single North American and the single South
American clade occurred approximately 25 mya, well before the closure of the Panamanian Isthmus. Overall, the
biogeographic history of Ephedra appears dominated by long-distance dispersal, but finer-scale studies are needed

to test this hypothesis.
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Efforts to date the evolutionary divergences of the
five extant seed plant lineages (Gingko L., cycads, gym-
nosperms, Gnetales, and angiosperms) with molecular
clocks have been hampered by the still unresolved re-
lationships between them (for a summary, see Mathews
et al., 2009, in press). Another problem is the marked
difference in the rate of molecular evolution among seed
plant lineages. The Gnetales in particular have unusu-
ally high or low substitution rates (depending on genus)
in all datasets examined so far (Sanderson et al., 2000;
Magalloén & Sanderson, 2002, 2005; Mathews, 2009).
For example, the rbcL substitution rate in Ephedra L.
is approximately 10-fold slower than that in its sister
clade Gnetum (Renner & Grimm, 2008). Such hetero-
geneity among lineages, which is not accommodated
by molecular substitution models, presents a challenge
for molecular clock dating, whether strict or relaxed.
In response to this challenge, local and relaxed clock
methods have been proposed that permit different parts
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of a tree to have different rates (Rambaut & Bromham,
1998; Thorne et al., 1998; Yoder & Yang, 2000; Kishino
et al., 2001; Rannala & Yang, 2007). Of these relaxed
clock approaches, several rely on a Bayesian frame-
work and assume that substitution rates are autocor-
related between branches, meaning that rate changes
occur gradually between ancestors and descendants as
a clade diversifies. Other Bayesian clock models as-
sume that branch-specific rates are drawn from a single
underlying distribution, such as a log normal, gamma,
or exponential distribution, the parameters of which
are estimated from the data (Drummond et al., 2006;
Rannala & Yang, 2007). Studies that have tested the
performance of the different approaches have found that
relaxed clock models with uncorrelated rates can out-
perform other approaches (Ho et al., 2005; Drummond
et al., 2006; Lepage et al., 2007; but see Ho, 2009).
The Gnetales comprise Ephedra L., Gnetum L.,
and Welwitschia Hook.f. and are one of the five major
groups of extant seed plants. Studies over the past 17
years have been unable to securely resolve the phyloge-
netic relationships of Gnetales with the four other seed
plant lineages (Mathews et al., 2009, in press). Most
recently, plastid sequence data have placed the Gnetales
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as sister to all non-Pinaceae conifers or cupressophytes
(“gnecup” clade; Nickrent et al., 2000; Doyle, 2006;
Chumley et al., 2008; Braukmann et al., 2009; Rydin &
Korall, 2009).

Resolving species-level relationships within
Ephedra has been equally problematic. However, in con-
trast with the many well-supported, yet often mutually
incompatible hypotheses on seed plant phylogeny, rela-
tionships in Ephedra have been largely unresolved ow-
ing to few informative characters in investigated gene
regions and substantial plasticity in gross morphologi-
cal traits (Ickert-Bond & Wojciechowski, 2004; Rydin
et al., 2004; Huang et al., 2005). A recent study, with
denser species sampling, provides support for several
subgeneric clades (Rydin & Korall, 2009), but the deep-
est divergences in the genus are still ambiguous.

Divergence times from molecular clock analyses
for the most recent common ancestors of living Gne-
tales genera range from 8-32 mya under a strict clock
for Ephedra (Huang & Price, 2003) to 10-11 or 14 mya
under a strict clock (Won & Renner, 2003, 2006) or
26-38 mya under a relaxed clock for Gnetum (Won &
Renner, 2006). Estimates for the Gnetales crown group
range from 120-131 mya (relaxed clock; Ickert-Bond
& Wojciechowski, 2002) to 189 mya (relaxed clock;
Schneider et al., 2004). Recent paleobotanical discov-
eries have further stirred up discussions about the age
of Ephedra (Yang et al., 2005; Rydin et al., 2006; Friis
et al., 2009), with some authors suggesting that Creta-
ceous fossil seeds resemble living species of Ephedra
and may date the divergence of crown group Ephedra
to ca. 125 mya (Yang et al., 2005; Rydin et al., 2006; Y.
Yang, Institute of Botany, Beijing, pers. comm., 2008).
However, to date, no ephedroid seed fossil has been un-
ambiguously placed within crown group Ephedra, and
these fossils are therefore of limited use as calibration
points in molecular dating analyses. Conversely, coal-
ified Ephedra seeds from the Drewry’s Bluff locality
of the Patuxent Formation in Virginia, USA, and from
Buarcos and Torres Vedras localities in Portugal, which
date to the late Barremian to early—middle Aptian age,
have been assigned to stem group Ephedra based on
two preserved features: (i) in situ Ephedra-type pollen,
including discarded upcurled exines, which show that
the pollen had germinated inside the ovules; and (ii)
preserved papillae formed by the inner epidermis of
the seed envelope. A combination of these features is
unique to Ephedra (Rydin et al., 20006).

Here we apply relaxed molecular clock dating, us-
ing an uncorrelated rates model, to an Ephedra dataset
that represents all the major clades found by Rydin and
Korall (2009) with the goal of inferring the most prob-
able age of the Ephedra crown group as well as the
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timing of key divergence events in the genus. The ra-
diation of extant Ephedra is interesting because of its
disjunct distribution in deserts north and south of the
tropics, but not in the intervening regions (a classic
amphitropical range; see Wen & Ickert-Bond, 2009).
The genus comprises approximately 50 species, which
are more-or-less equally distributed between the Old
and New World deserts. In light of recent palacobotan-
ical evidence (above), availability of large molecular
datasets for both Ephedra and Gnetum, as well as new
approaches to dating that take into account topologi-
cal uncertainty and rate heterogeneity among lineages,
in the present paper we provide new age estimates for
Ephedra and discuss their implications for the evolution
of the genus.

1 Material and methods

1.1 Taxon sampling

To assemble the most useful phylogenetic dataset
of Ephedra we included as many taxa and genes as
possible from GenBank. We used PHYLOTA (Sander-
son et al., 2008; http://loco.biosci.arizona.edu/pb/) to
extract GenBank data. The browser returned 10 phy-
logenetic informative clusters. The genes comprising
these clusters have been variously used for phyloge-
netic inference of the Gnetales and include the apB
gene (Rydin et al., 2002), the rbcL gene (Rydin et al.,
2002, 2004; Rydin & Killersjo, 2002; Huang & Price,
2003; Won & Renner, 2003, 2006; Huang et al., 2005;
Wang et al., 2005; Rydin & Korall, 2009), the matK
gene (Won & Renner, 2003, 2006; Huang et al., 2005),
the rps4 gene (Ickert-Bond & Wojciechowski, 2004;
Rydin et al., 2004; Rydin & Korall, 2009), the psbA-
trnH intergenic spacer (IGS) (Techen et al., 2006), the
trnL gene, and the trnl—trnF 1GS (Long et al., 2004), as
well as nuclear ribosomal 18S (Rydin et al., 2002, 2004;
Wang et al., 2005; Rydin & Korall, 2009), 26S (Rydin
et al., 2002, 2004; Rydin & Korall, 2009), and inter-
nal transcribed spacer (ITS) 1 and ITS2 (Ickert-Bond &
Wojciechowski, 2004; Rydin et al., 2004; Huang et al.,
2005; Wang et al., 2005; Won & Renner 2005, 2006;
Rydin & Korall, 2009). We excluded the cluster of the
chiB gene (Boivin et al., 1996) from further consider-
ation because it only contained four taxa. In addition
to the clusters returned by PHYLOTA, we added the
plastid 7pl16 intron and the trnSYSA—trnfM AV intron
data from Rydin and Korall (2009). Because of the
tradeoff between increasing gene and taxon sampling
and limiting the amount of missing data, we reduced
the initial matrix from 265 to 95 accessions. The re-
duced matrix included the most complete coverage
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for the genes used while maintaining sampling of the
geographic and taxonomic diversity of Ephedra. This
matrix included 53 accessions of Ephedra, 13 acces-
sions of Gnetum, Welwitschia mirabilis, and 28 acces-
sions of other gymnosperm taxa comprising the out-
group. Information regarding vouchers and GenBank
accession numbers is given in Table 1.

1.2 Sequence and phylogenetic analyses

Maximum likelihood (ML) searches were per-
formed in RAXML 7.2.1 (Stamatakis, 2006), using the
GTR+T model. Model parameters were estimated over
the duration of runs and searches started from random
parsimony trees. Statistical support was measured by
ML bootstrapping in RAXML, with 100 replicates.

1.3 Estimation of divergence time

We used a Bayesian relaxed clock as implemented
in BEAST 1.4.8 (Drummond et al., 2006; Drummond
& Rambaut, 2007). To reduce topological uncertainty
in parts of the tree, which prevented the Markov chain
Monte Carlo (MCMC) chains from reaching a station-
ary state, we gradually reduced the 95-taxon matrix to
67, 54, 46, and 42 taxa (with varying taxon combina-
tions), and we also took out partitions with more than
30% empty cells, which left a matrix of 7736 aligned
nucleotides. After tuning the operators using the auto-
optimization option in BEAST, analyses used a speci-
ation model that followed a Yule tree prior, with rate
variation across branches uncorrelated and lognormally
distributed. The MCMC chains were run for between 40
and 60 million generations (burn-in 10%), with param-
eters sampled every 1000th step. Results from individ-
ual runs were combined as recommended, and effective
sample sizes for all relevant estimated parameters and
node ages were above 100. Because the oldest described
ephedroid fossils place somewhere along the stem lin-
eage of Ephedra (see above), we used a single constraint,
namely a lognormal prior probability that the split be-
tween Gnetum and Welwitschia is at least 110 mya old
(with a 95% confidence interval of 10 mya), based on the
welwitschioid fossil seedling Cratonia cotyledon (Ry-
din et al., 2003) from the Early Cretaceous of Brazil.
This fossil is slightly younger than the oldest Ephedra
seeds (125 mya) and clearly belongs to crown group
Gnetales, based on the presence of an embryo feeder
and a unique venation pattern, shared by the fossil and
Welwitschia.

2 Results

The ML tree obtained from the 10 locus—95
taxon dataset shows relationships within Ephedra

2009

(Fig. 1) that are similar to those recovered by
Rydin and Korall (2009), although species sampling
in the present study is smaller. Ephedra foeminea is
sister to the rest of Ephedra. The next diverging clade
is one of strictly Mediterranean taxa (E. altissima, E.
aphylla, E. milleri, E. alata and E. fragilis), sister to the
rest of Ephedra (“core Ephedra” sensu Rydin & Korall,
2009). Core Ephedra comprises several subclades of
Mediterranean and Asian distribution (e.g. E. laristan-
ica and E. foliata), but there is no statistical support for
their precise composition and relationships. However,
the New World clade of Ephedra is strongly supported
(bootstrap (BS) 94%) and consists of North American
and South American clades. The large substitution rate
heterogeneity among Gnetales is evident from the phy-
logram (Fig. 1), particularly the long branches leading
to the three genera compared with the significantly re-
duced branch lengths within Ephedra.

Relationships among the fewer species included in
the molecular clock runs (Fig. 2) differ in part from those
obtained from the ML analysis (Fig. 1) and have slightly
better statistical support because the matrix includes
many fewer missing nucleotides. Table 2 lists divergence
times obtained for key nodes within Ephedra (labeled 3—
9 in Fig. 2). Although deep divergences have originated
in the Oligocene, most of the tip clades have diverged
more recently in the Late Miocene or Pliocene (Fig. 2).

3 Discussion

The results of the present study provide strong ev-
idence for a recent radiation of extant Ephedra. Given
the few clear morphological differences among species,
it has been suggested that the lack of molecular diver-
gence in Ephedra plastid genomes may be the result of
hybridization and polyploidization, which appears to be
rampant in the genus (Cutler, 1939; Ehrendorfer, 1976;
Choudry, 1984; Wendt, 1993). Plants with montane dis-
tribution also frequently exhibit rapid diversification,
likely because of small-scale habitat heterogeneity (Bell
& Donoghue, 2005; Hughes & Eastwood, 2006).

Studies with a comprehensive species sampling
of Ephedra (the Bayesian analysis in Rydin &
Korall, 2009; the ML analysis in the present study)
indicate a basal grade of Mediterranean species and
thus a possible origin of the crown group of Ephedra
in the Mediterranean region (northern Africa, south-
ern Europe, the Near East). However, these basal di-
vergences still have little statistical support owing to
the limited signal in the loci so far included (Ickert-
Bond & Wojciechowski, 2004; Ickert-Bond et al., 2009;
Rydin & Korall, 2009; present study). Parsimony
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Fig. 1. Maximum likelihood (ML) phylogeny, inferred from 10 combined chloroplast and nuclear ribosomal DNA (nrDNA) loci for 95 taxa of
gymnosperms; branch lengths computed using RAXML. The ML bootstrap support values above 80% are indicated above the branches. The biogeographic

distribution of Ephedra taxa is shown on the right.

analysis (Rydin & Korall, 2009), as well as Bayesian
analysis of the reduced dataset in the present study
(Fig. 2), results in a Mediterranean clade sister to the re-
maining Ephedra. The respective divergence may have
taken place some 30 mya (Fig. 2, node 3; Table 2).
Within the Mediterranean clade, the Near Eastern E. fo-
liata (Arabia and Somalia) and E. laristanica (Iran) split
from the western Mediterranean species ca. 26 mya.
Turning to the (mostly) Asian clade of Ephedra, the pre-
vailing pattern appears to be westward dispersal (Fig. 3),
with an estimated divergence of a strictly Chinese clade
from the rest of the Asian/African clade at 28 mya
(Fig. 2, node 5; Table 2). Dispersal into the Horn of
Africa from the Asia 1 clade (Fig. 2, node 9; Table 2)
may date back to 16 mya.

New World species are monophyletic and estimated
to have diverged from their mostly Asian sister clade
some 30 mya. This timeframe is corroborated by many

© 2009 Institute of Botany, Chinese Academy of Sciences

other Beringian plant disjunctions (for a review, see
Wen & Ickert-Bond, 2009). In turn, the New World
species split into a North American and a South Amer-
ican clade (Fig. 2), which appear to have diverged ap-
proximately 25 mya; that is, well before the closure of
the Panamanian Isthmus (Fig. 2, node 7; Table 2). These
results mirror other studies indicating that significant
dispersal took place between Mesoamerica and South
America before the closure of the Isthmus of Panama
during the Oligocene or Miocene (e.g. mammals: Mar-
shall & Sempere, 1993; Melastomeae: Renner & Meyer,
2001; Ruprechtia (Polygonaceae) and Nissolia (Legu-
minosae): Pennington et al., 2004; and Platymiscium
(Leguminosae): Saslis-Lagoudakis et al., 2008).
Dispersal in Ephedra may have been facilitated by
the ovulate bracts, which, in some species of Ephedra,
are bright red and fleshy and indicative of endozoochory
(Stapf, 1889; Freitag & Maier-Stolte, 1994; Danin,



452 Journal of Systematics and Evolution Vol. 47 No. 5 2009

MESOZOIC CENOZOIC
Cretaceous Pal.| Eocene [Oligoc] Mioc. [PI]

Jurassic

Welwitschia_mirabilis
Gretum_africanum
Gretum_urens_SAmerica
Gretum_ula_Asia

Gretum_parvifolium_Asia
Gretum_cuspidatum_Asia
Gretum_costatum_Asia

Gnetum_gnemon_Asia
Gnetum_nodiflorum_SAmerica

Asia 1

E_somalensis Horn of Africa
L E_pachyclada Asia
E_distachya
E_sarcocarpa
- E_strobilacea
E_intermedia Asia 2
Iy &-omatolepis

Bl E_monosperma
E_sinica

| |
G

South
America

North
America

Mediterranean

|
|
|
|
|
|
|
|
1|
|
|
|
|
|
|
|
1|
|
|
|
1
|
|
|
|
|
|
|
|
|
JI
|
|
|
|
J|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SN g L g LR S S S

| L1
| Jurassic Cretaceous Pal.| Eocene [Oligoc] Mioc. [Pl

| DO G N R R EO D AR |
1 150 130 110 w0 70 50 30 10 mys
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Table2 Time estimates (in million years) and confidence intervals for significant nodes for the crown group Ephedra obtained from combined analysis
of the 7736-nucleotide matrix under an uncorrelated rates molecular clock (see Material and Methods)

Node W 95% Highest posterior

no. Clade name Fossil evidence Fossil  Estimated density intervals

1 Split: Welwitschia vs. Gnetum Cratonia cotyledon 110* 111.35 87.21, 127.01

2 Divergence of Ephedra from Gnetum and Welwitschia Ephedra 125 166.61 90.62, 192.34

archaerhytidosperma

3 Divergence Mediterranean clade from core Ephedra 30.39 20.55,73.5

4 Divergence of NW clade from the rest of core Ephedra 29.56 8.84,41.53

5 Divergence of China clade from rest of mixed Asia clade 27.63 14.45,49.36

6 Divergence of Middle Eastern/Horn of Africa from 25.8 15.37,55.53
African Mediterranean members

7 Divergence of North American clade from South American clade 24.78 8.84,41.53

8 Divergence of Asia 2 clade from combined Asia 1/Horn of 20.61 14.35,49.36
Africa and Asia clade

9 Divergence of Asia 1 clade from Horn of Africa/Asia clade 15.51 6.18,32.5

*Used as a constraint.
n.a., not available.

Fig. 3.

1996; Hodar et al., 1996). Bird dispersal has also been
observed directly (Ridley, 1930; Hollander et al., 2009).
In contrast, dry, wing-bracted strobili are adapted for
anemochory (Stapf, 1889; Danin, 1996). The seeds
of North American E. aspera, E. californica, E. fu-
nerea, E. nevadensis, and E. viridis are not fleshy and
their ovulate bracts are not winged. Seeds of these
“intermediate bracted” taxa often accumulate at the
stem base, and seed-caching rodents have been ob-
served as dispersers (Ickert-Bond, 2003; Ickert-Bond &
Wojciechowski, 2004; Hollander & Vander Wall, 2009;

© 2009 Institute of Botany, Chinese Academy of Sciences

Distribution of Ephedra (green shading) and hypothesized intercontinental (solid arrows) and intracontinental dispersal routes (dashed arrows).

Hollander et al., 2009). Wind-dispersed Ephedra typi-
cally inhabit marginal habitats, such as hyperarid deserts
or dry salt lakes devoid of animal life (Danin, 1996),
and, in general, dispersal biology in Ephedra appears
to relate to habitat, rather than being phylogenetically
conservative (Hollander et al., 2009).

Recent studies have found that reliable topologies
may be obtained even in the face of large amounts
of missing data (e.g. Wiens, 2003, 2006; McMahon
& Sanderson, 2006; Smith et al., 2009). However, for
molecular clock dating, missing data present a so-far
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insurmountable challenge. This is because estimation
of divergence time depends on accurate estimates of
branch lengths, which can only be obtained with large
numbers of nucleotides (Sanderson, 1998). When the
BEAST dating runs failed to reach stable distributions,
we first reduced the number of empty cells by delet-
ing data partitions that lacked sequences for more than
30% of the included species; next, we deleted species
that lacked sequences for more than five loci. Even so,
a combined run length of 108 million generations was
needed for each parameter to converge on a stationary
distribution.

A caveat with all molecular clock dating is that the
absolute ages obtained depend on the calibration used.
An earlier study that concentrated on Gnetum and only
included three species of Ephedra, using a Bayesian re-
laxed clock and an auto-correlated model, explored the
effects of three different constraints (Won & Renner,
2006). In one experiment, these authors used 125-mya-
old Ephedra seeds to constrain the crown group age
of Ephedra. This had the effect of roughly doubling
within-Gnetum estimates compared with the ages ob-
tained when these seeds were assigned to the Ephedra
stem (Won & Renner, 2006, table 1). In the present
study, we initially included representatives of all ma-
jor lineages of gymnosperms so that we could con-
strain the Ephedra stem to a minimum of 125 mya.
However, this introduced the problem of the uncer-
tain placement of Gnetales within seed plants, a prob-
lem that Won & Renner (2006) circumvented by con-
ducting dating runs under four different seed plant
topologies.

With just the Gnetales included, as in Fig. 2, one
cannot infer a Bayesian probability distribution around
the split between Ephedra and Gnetum/Welwitschia.
Instead, we decided to rely exclusively on the Cra-
tonia cotyledon fossil from the Early Cretaceous of
Brazil, the assignment of which is unambiguous be-
cause it clearly represents the Welwitschia stem group
(Rydin et al., 2003). This calibration yielded an age
of 167 mya (91-192 mya confidence interval) for the
divergence between Ephedra and the other two gen-
era. This age range is too large to be very useful, but
fits the placement of Gnetales within conifers, per-
haps as sister to the non-Pinaceae conifers (“gnecup”
clade; Nickrent et al., 2000; Doyle, 2006; Chumley
et al., 2008; Braukmann et al., 2009; Rydin & Korall,
2009), and also with the Ephedra pollen and seed fossil
record.

The present biogeographic analysis (Figs. 2, 3)
corroborates other molecular studies that have found
New World clades of Oligocene age evolving out of
Asian paraphyletic residuals, which is the classic pat-

2009

tern of Beringian disjunctions (for summaries, see Wen
& Ickert-Bond, 2009). Our work also adds to a growing
body of studies reporting long-distance dispersal be-
tween arid floras in North and South America (Moore
et al., 2006). Finer-scale studies are now needed to test
the broad-brush biogeographic scenario for Ephedra de-
veloped here.
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