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Abstract Most wilderness areas still lack accurate dis-

tribution information on tree species. We met this need

with a predictive GIS modeling approach, using freely

available digital data and computer programs to efficiently

obtain high-quality species distribution maps. Here we

present a digital map with the predicted distribution of

white spruce (Picea glauca) in Alaska (4 km resolution,

accuracy over 90%). Our presented concept represents a

role-model for predicting tree species distribution for

remote areas world-wide. Although this model intends to

be accurate in making predictions rather than to give

detailed biological mechanistic explanations, it can also

be used as a baseline for further research and test-

able hypothesis on the importance of the environmental

variables used to build a generalizable model. Further, we

emphasize that work like presented here is a pre-condition

for assessing human impacts and impacts of climate change

on species distribution in a quantitative and transparent

fashion, allowing for improved sustainable decision-mak-

ing world-wide.
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Abbreviations

AGDC Alaska Geospatial Data Clearinghouse

CODATA Committee on Data for Science and

Technology

ESRI Environmental Systems Research Institute

FGDC Federal Geographic Data Committee

FIA Forest inventory and analysis

GIS Geographic information system

ICSU International Council for Science

IDW Inverse distance weighting

IPY International Polar Year

NAD83 North American Datum of 1983

NBII National Biological Information

Infrastructure

NDVI Normalized difference vegetation index

NSF National Science Foundation

OA Open access

OECD Organisation for Economic Collaboration

and Development

PRISM Parameter-elevation regressions on

independent slopes model

ROC Receiver operating characteristic

SDM Species distribution models
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Introduction

The distribution of tree species in remote areas is currently

not well known. Most areas in mountainous regions and

remote islands for instance still suffer from a lack of

detailed plant species distribution mapping. This is also

true for Alaska. To date, literature on Alaska’s tree species

is only available as atlases with coarse range maps (Hultén

1968; Viereck and Little 2007). However, reliable infor-

mation even about simple presence or absence within this

broad range of a single species cannot be sufficiently

detected from such maps. Furthermore, species distribution

information is given in eco-classifications (Viereck et al.

1992) and in forestry related articles (e.g. Farr and Harris

1979; LaBau and Alden 2000). Several maps show eco-

system or vegetation types of Alaska (Fleming 1997;

Gallant et al. 1995), however, they are plant communities

and do not show single species distributions as such.

Articles concerned with single tree species either report on

a certain region within Alaska (Hennon and Trummer

2001; Murray 1980) or focus on species genetics (Viereck

and Foote 1970). An exhaustive report on single species’

ranges could not be found. Alaska is the home of over 15

tree species, and such species are of great interest for the

assessment of wildlife habitat, vegetation type classifica-

tion, and adaptive resource management. As large areas of

Alaska are very difficult to access, there is a need for

advanced approaches to mapping tree species. Here we

investigate a predictive modeling approach that uses pub-

licly available tools, data and environmental variables to

predict tree species distribution promising a high accuracy.

Need for a species distribution model (SDM)

of trees in Alaska

Plant–climate-relationships and the importance of various

other environmental factors for the geographical distribu-

tion of plant species have been recognized early (Whittaker

1967) and are widely used to explain biogeographical pat-

terns (e.g. Ellenberg 1988; Walter 1985). SDMs use these

concepts to determine the ecological niche of a species

based on several environmental variables. The ecological

niche can be projected into geographical space, resulting in

a predictive map of the species’ distribution (Franklin 1995;

Tsoar et al. 2007). SDMs are widely applied for the study of

plant species distribution (e.g. Engler et al. 2004; Franklin

1998; Guisan et al. 1998). They are a crucial tool for

obtaining better maps, which are needed to facilitate further

research on the species themselves (Parviainen et al. 2008),

for developing informed hypotheses on wildlife and habitat

(Guisan and Zimmermann 2000), for classifying plant

communities and for assessing their change in composition

or distribution (Ferrier and Guisan 2006; Zimmermann and

Kienast 1999), and also for improving ecological theory and

knowledge (Dunning et al. 1995). Furthermore, maps

derived through predictive modeling are used to improve

floristic and faunistic atlases (Araújo et al. 2005; Prasad

et al. 2007-ongoing), to assess the impact of land-use

change (Dunning et al. 1995) or to help decide on conser-

vation priorities (Margules and Austin 1994). They are an

inherent tool in modern Adaptive Management (Huettmann

2007; Walters 1986). Developing SDMs using publicly

available data is easier, faster, and less expensive than

mapping in the field. A more detailed literature overview on

the use of SDMs and what it entails can also be found in

Guisan and Thuiller (2005).

Concept of open access in predictive modeling

Open access (OA) offers an improved principle of sharing

high-quality scientific information among scientists as well

as with the global public. Also, it makes scientific methods

transparent and repeatable to everybody, which should add

to its credibility and increased trustworthiness. This con-

cept becomes available due to recent advances in com-

puting, databases and online data delivery. OA is a recent

movement that is virtually promoted globally by ICSU,

OECD, CODATA, NSF, the European Union as well as by

global policies such as the Rio Convention, and mega-

science programs such as the IPY. Latest publicly funded

science in the US and Canada is based on such OA prin-

ciples and becomes a requirement for publication and

funding (National Research Council 2003; Interagency

Working Group on Digital Data 2009). This paper provides

a further example of applied OA principles. A list of free

available datasets and tools used in this study can be found

in Table 1.

White spruce

Our modeled species, white spruce (Picea glauca

[Moench] Voss), is one of the most common tree species in

Alaska, and is of ecological and commercial importance,

occupying app. 25% (121,000 km2) of Alaska’s boreal

forest (Labau and van Hees 1990). It has good overall data

available, but suffers critical data gaps throughout its

Alaska and wilderness distribution. White spruce occurs

both in floodplains and uplands (Viereck et al. 1986;

Walker et al. 1986). It is the dominant treeline species in

the two main mountain ranges of Alaska, and forms large

stands in the highlands of Interior Alaska (Juday et al.

1999), occurring from 100 m to treeline (300–1,600 m)

(Viereck and Little 2007). White spruce appears to grow

best on south-facing slopes and well-drained, sandy soils

along the edges of lakes and rivers, but not in areas with
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continuous permafrost (Viereck et al. 1992). White spruce

is known to be an important habitat for moose (MacCracken

and Viereck 1990; Risenhoover 1989), red squirrel (Brink

and Dean 1966; Smith 1968), marten (Buskirk 1984;

Slough 1989), and hare (Sinclair et al. 1988; Wolff 1978).

White spruce also plays an important role in local timber

production and fuel supply (Holsten et al. 1991; Viereck

and Little 2007). However, maps on single tree species

distribution can hardly be found, and even the FIA database

does not contain information beyond south-east and south-

central Alaska.

Methods

Datasets

Our training dataset consisted of 108 confirmed white

spruce presence datapoints, available for this species as

biogeoreferenced records (online at Arctos Multi-Institu-

tion, Multi-Collection Museum Database, University of

Alaska Museum Herbarium). The points represent samples

dating from 1900 to 2000 and 85% have a location

uncertainty of c. 3,615 m (horizontal and vertical datums

unknown). Thus, we used a buffer of 3,615 m radius for

each point (equivalent pixel size: 6,407 m 9 6,407 m). As

the Arctos Database does not include absence data, we

created 600 pseudo-absence points (Engler et al. 2004;

Tsoar et al. 2007) using the publicly available Hawth’s

tools random sample tool in ArcGIS 9.2 (see Table 1).

More specifically, half the points were randomly distrib-

uted all over Alaska, the other half only within non-forest

vegetation types according to a digital vegetation cover

map (Fleming 1997, online available from the AGDC), in

order to obtain more absence points in areas where absence

is more likely. In a multi-hypothesis fashion (sensu

Burnham and Anderson 1998), we tested 24 environmental

variables and latitude and longitude as potential predictors

for the distribution of white spruce (see Table 2 for com-

plete list of predictors). For climate data we used the

datasets on Alaska average monthly precipitation/monthly

mean temperature, 1961–1990, by C. Daly (2 km 9 2 km

raster data, provided by PRISM). Elevation, aspect, and

slope came from AGDC as 1 km 9 1 km raster, aspect

was used as a continuous variable, which ensures more

transparency and accuracy than the traditional use of cat-

egories. We also used permafrost, soil, and surface geology

(polygon data) from AGDC. In order to extrapolate the

model results evenly to a large area, a regular grid was

created in Hawths Tools for the entire state of Alaska,

carrying an even point spacing of 4 km.

Model

A model approach described in Fig. 1 was used to predict

the distribution of white spruce, but is intended to represent

a role-model for predicting any tree species distribution for

remote areas anywhere in the world. The datasets were

overlayed in ArcGIS 9.2 (step 1) and transformed to a

consistent projection (Alaska Albers, geographic datum:

NAD-83 Alaska). The values of each layer were extracted

to the buffered presence points (mean values from raster

datasets, prevailing class from polygon datasets) as well as

to the 600 pseudo-absence points, resulting in a table with

presence/absence as a response and climatic and biocli-

matic variables as predictors. The environmental parameter

values were also extracted to the regular grid (step 2).

For modeling the associations between the tree species

and its environmental predictors, we favoured non-parsi-

monious (with ‘parsimonious’ referring to approaches

based on few preselected determinant values) and non-

linear modeling. Hence, we applied machine learning

concepts, such as classification trees (Breiman et al. 1984;

Breiman 2001) to obtain best possible predictions. These

Table 1 Open access datasets and tools used in this study

Dataset or software tool Source Service

Species data http://arctos.database.museum/home.cfm Online information on species of herbarium collection

Climate data http://www.prism.oregonstate.edu/ Spatial climate research, education, analysis and

mapping data services

Data on elevation, soil, permafrost, and

surface geology

http://agdc.usgs.gov/data/projects/fhm/ Spatial resource data base, data meet FGDC meta-data

standards

Hawth toolsa http://www.spatialecology.com/htools/ Free extension for ESRI’s ArcGIS (specifically

ArcMap)

TreeNetb http://salford-systems.com/treenet.php Statistical analysis tool (90 days trial version)

a Instead of ArcGIS, free software (e.g. GRASS GIS) could be used
b For free long-term use (without a Graphical User Interface) also available as R-package (Generalized Boosted Models), see

http://cran.r-project.org/web/packages/gbm/index.html
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methods account for complex ecological and environmen-

tal interactions between variables (Guisan et al. 2006;

Lawler et al. 2006), and even when using noisy data (Craig

and Huettmann 2008) they show high performance with

fine and coarse resolution datasets (Guisan et al. 2007). We

used the boosting classification and regression tree soft-

ware TreeNet (SalfordSystems, San Diego, CA, USA) to

analyze the data and to build the model (Hastie et al. 2001;

Friedman et al. 2000).

After initial testing, and for obtaining best results, we

used TreeNet with the following settings: three nodes per

tree, minimum number of six observations per terminal

node, 100-fold cross validation (to ensure high model

stability), and the option ‘balanced’ for equal weight of

number of presence and absence points (Maggini et al.

2006). Here we followed the concept of using informed

default settings, as promoted in Blackbox modeling for

ease and convenience. It is known that this approach with

its settings in most cases helps to achieve good modeling

results in a fast and reliable manner (Craig and Huettmann

2008). Obtaining good but time-critical results is usually

crucial for management-related applications as provided

here. First, we ran nine basic models (Table 3, models 1–9)

to compare effects of temperature/precipitation with those

of soil characteristics. We then compared ROC values and

percent of correctly predicted presences (misclassification

threshold 0.5, hereafter referred to as %corr).

From these exploratory runs, the models with

ROC [ 0.75 and %corr [ 0.65 (models 3, 5, 6, 7) were

kept and slightly modified by dropping climate variables

that consistently fell into the lower half of the variable

ranking lists of most of the models (models 3, 5, 7), or were

considered not important by TreeNet variable ranking

(models 8, 9). Thus, we derived nine more models to fur-

ther improve ROC values and %corr, and finally, the four

best-performing models were chosen (models 6, 12, 14, 15,

step 3). These four models were applied within TreeNet in

order to predict presence/absence to the regular grid (step

4). The predicted value of relative occurrence for each

gridpoint was mapped and points were interpolated using

the IDW (Inverse Distance Weighting) tool. Thus, four

maps with the statewide index of relative occurrence of

white spruce were obtained (step 5). The concept followed

principles described by Huettmann and Linke (2002), batch

files of the TreeNet runs are available on request.

Accuracy assessment

Assessing the accuracy of a spatially explicit model means

assessing prediction errors and spatial uncertainties. For a

first comparison of models and their accuracies we inter-

preted ROC curves, derived from cost matrices (Bradley

1997; Fielding and Bell 1997). For a more detailed

assessment, predicted map values (predicted index of rel-

ative occurrence) were compared to evaluation data points

taken from four independent datasets with ‘presence only’

data (Fig. 1, step 6). As a measure of model performance,

we found the Boyce index to be most suitable (Boyce et al.

2002), as it is independent of the prediction’s threshold

between presence and absence and it is based on evaluation

data using presence-only (Hirzel et al. 2006). The Boyce

index Fi is an area adjusted frequency index. Lower habitat

suitability classes should have Fi values\1 (less evaluation

points than with a random distribution) and high habitat

suitability classes should have Fi values [1 (more evalu-

ation points than with a random distribution). Fi was then

plotted against the mean index of relative occurrence for

each class, resulting in a curve that is monotonically

increasing for a model with high accuracy, and monoton-

ically decreasing for models with low accuracy. Perform-

ing a (non-parametric) Spearman’s rank correlation of the

Boyce indices of all classes versus the mean index of rel-

ative occurrence of each class provides an estimate about

how stable the prediction of the specific class is, compared

to the overall prediction accuracy of the model (step 7),

Table 2 Environmental variables used for developing the models

Variable Description

tmean_01 Mean temperature January (�C 9 10)

tmean_04 Mean temperature April

tmean_05 Mean temperature May

tmean_06 Mean temperature June

tmean_07 Mean temperature July

tmean_08 Mean temperature August

tmean_09 Mean temperature September

tmean_g Mean temperature growing season

(May through September)

t_juljan Temp difference July–January (means)

tmean_ann Mean annual temperature

ppt_04 Precipitation sum April (mm)

ppt_05 Precipitation sum May

ppt_06 Precipitation sum June

ppt_07 Precipitation sum July

ppt_08 Precipitation sum August

ppt_09 Precipitation sum September

ppt_grow Precipitation sum growing season

(May through September)

ppt_ann Annual precipitation sum

Elevation Elevation (m)

Aspect Aspect (�)

Slope Slope (�)

Permafrost Permafrost (classes)

Soil Soil (classes)

Sufgeol Surface geology (classes)
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while the overall prediction accuracy of the model can be

assessed by the Spearman’s rank correlation coefficient rs.

Data management

For this study, we used OA tools and data as this has many

advantages and implications for studies and project goals

like ours. Most of these data proved to be of sufficient and

reliable quality and carried high-quality metadata (all cli-

mate data and elevation dataset). Only some data came with

very basic descriptions (species data, soil, permafrost, sur-

face geology) and details had to be requested by email. We

operated these data on a PC within Excel and ArcGIS 9.2

and with the help of additional free tools (Hawth’s tools).

GIS data are presented in grids and shapefiles. Metadata

were created within ArcCatalog and the freely available

Metavist XML editor, and made globally available at the

National Biological Information Infrastructure website

(NBII, http://mercdev3.ornl.gov/nbii/). All data formats we

used are supported by OpenGIS and OpenOffice.

Results

Model ranking with TreeNet

Model ranking was done by comparing ROC values and

%correctly predicted presences (Table 3). Models 1–9

(exploratory runs) obtained relatively low ROC and %corr

values (\0.8 and\0.7, respectively). Two exceptions were

models 6 and 7, with model 6 (only elevation, aspect, and

slope) reaching a slightly higher ROC value (0.806) and the

highest value for %corr compared to all other 17 models

(84.47). Model 7 (same as model 6 plus all temperature and

precipitation variables) reached an even higher ROC value

(0.869), but a lower %corr value (78.64). Model 10 showed

only slightly improved values. The three models 11, 12,

and 13 ranked highest according to the ROC values (all

0.875), with model 12 having the highest value for %corr

compared to all other 17 models (79.61). Models 14

(improvement of model 11 by adding lat and long) and

model 15 (improvement of model 11 by adding permafrost)

scored with relatively high ROC (both 0.871) and %corr

values (77.67 and 75.73, respectively). Adding soil (model

16), surfgeol (model 17), or permafrost ? surfgeol (model

18) did not improve ROC or %corr values. However, it is

worthwhile to point out that the best predictions were not

achieved by the most parsimonious model, i.e. the one with

the fewest predictors, giving further support for non-par-

simonious non-linear model algorithms that can deal with

highly complex data. This approach allowed us to identify

interactions among variables and to determine systemati-

cally the variable combinations with the highest impact.

We chose (1) the model with the highest ROC value

(model 12), (2) the one with the highest %corr value

(model 6), (3) the best model including lat ? long (model

14), and (4) the best one including at least one of the

variables permafrost, soil or surface geology (model 15) as

models for further consideration. For comparison of the

ROC curves for the four most relevant models (6, 12, 14,

and 15) see Supplemental Fig. 5a–d.

Variable importance

As an example, the variable importance, as obtained from

TreeNet for model 12 (best-performing model) is shown in

Table 4. Values represent absolute and relative importance,

and thus aid in ranking the variables. The variable impor-

tance ranking shows a high contribution of aspect as a

predictor variable, as well as total precipitation in August,

followed by mean temperature in April. Precipitation sum

of April, May and total precipitation sum between May and

September are of minor importance, as are mean temper-

atures in May, September, and June, as well as elevation.

The temperature differences between the warmest and

Fig. 1 Flowchart illustrating the concept of model development used

in this study and proposed as a role model for future models
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coldest months are least important. The partial contribution

of the variable values to the model can be seen in the single

variable plots in Fig. 2a–d. The occurrence of white spruce

appears to be favored by warm aspects of 150�–250� (SSE

to SWW), whereas cooler aspects of 300�–50� (NWW to

NE) appear to inhibit its presence (Fig. 2a). White spruce is

also more likely to occur in areas with a total sum of

precipitation in August below 75 mm and April mean

temperatures above -4�C (Fig. 2b, c). The results from

evaluation of the influence of elevation on the distribution

of white spruce in Alaska are less clear. While an elevation

below 1,000 m has a positive influence on the presence of

white spruce (Fig. 2d), an elevation above 1,000 m has a

negative influence.

Mapping the predicted distribution

Maps showing the predicted distribution of white spruce in

Alaska, as obtained by the four chosen models (6, 12, 14,

and 15), showed broad scale consistencies (for comparison

see Supplemental Fig. 6). Visual comparison identified

constantly low predicted values of relative occurrence for

coastal regions, especially in the north and south, and

higher values for Interior Alaska. Only some noise occured

on the small scale in the midlatitudes of Alaska, resulting

in a ‘salt-pepper’ like pattern, which might indicate true

mid-range values overall in the wider region. However, the

north-east part of the Interior revealed consistently high

values of relative occurrence for all models. The map in

Fig. 3 shows the index of relative occurrence of white

spruce as predicted by the best-performing model (model

12). Fully in agreement with IPY Metadata & Data Policy,

all maps as well as the according metadata are made

available, e.g. the IPY data repository of the Global

Change Master Directory (http://gcmd.nasa.gov).

Model performance

The Boyce index (Fig. 4a) revealed similar patterns for

models 12, 14, and 6 for low and middle classes, with all

F1–6 \ 2, but differing patterns for higher classes (F7–10),

with model 6 entirely omitting classes 9 and 10. In contrast

to the broad pattern, only model 15 showed a more fluc-

tuating curve for the Boyce indices. The spearman’s rank

correlation for models 12, 14, and 6 showed that predic-

tions for classes of high and low relative occurrence were

Table 3 ROC values and

%correctly predicted presences

(misclassification threshold 0.5)

All values obtained by TreeNet,

internal model test

Model no. Variables included ROC %corr

1 All temperature variables 0.726 67.96

2 All precipitation variables 0.722 58.25

3 All temperature and precipitation variables 0.775 66.02

4 Surfgeol, permafrost, soil 0.704 46.30

5 Temperature, precipitation, elevation 0.777 66.99

6 Elevation, aspect, slope 0.806 84.47

7 Temperature, precipitation, elevation, aspect, slope 0.869 78.64

8 All 24 environmental variables 0.718 53.40

9 All 24 environmental variables, lat, long 0.716 53.40

10 tmean_01, 04, 05, 06, 09; ppt_04, 05, 06, 07, 08, grow; elevation 0.777 64.08

11 Same as 10, ?aspect 0.875 78.64

12 tmean_04, 05, 06, 09; ppt_04, 05, 08, grow; elevation, aspect 0.875 79.61

13 Same as 12, ?slope 0.875 77.67

14 Same as 12, ?lat, long 0.871 77.67

15 Same as 12, ?permafrost 0.871 75.73

16 Same as 12, ?soil 0.772 54.37

17 Same as 12, ?surfgeol 0.860 75.73

18 Same as 12, ?permafrost, surfgeol 0.863 73.79

Table 4 Variable importance (ranking) for model 12 according to

TreeNet

Variable Absolute importance Relative importance

Aspect 48.70 100.00

ppt_08 28.30 58.11

tmean_04 22.46 46.12

ppt_04 20.12 41.33

ppt_05 19.91 40.88

ppt_grow 18.11 37.20

tmean_05 17.40 35.73

tmean_09 17.12 35.16

Elevation 16.83 34.56

tmean_06 15.75 32.34

tjuljan 14.66 30.10
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more stable than were classes of mid-range relative

occurrence (see trendline, Fig. 4b). This indicates that the

models’ ability to predict low and high relative occurrence

was better than the ability to precisely predict relative

occurrence of mid-range, overlapping gray zones, on the

pixel scale. However, models 12, 14, and 6 reached an rs of

over 0.9 (0.952, 0.905, and 0.907, respectively), whereas

model 15 showed a large instability in predictive ability for

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

-200 -180 -160 -140 -120 -100 -80 -60 -40 -20 20 40 60

P
ar

tia
l D

ep
en

de
nc

e

TMEAN_04

One Predictor Dependence For
PA = 1

-0.2

-0.1

0.0

0.1

0.2

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

P
ar

tia
l D

ep
en

de
nc

e

ELEVATION

One Predictor Dependence For
PA = 1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

400300200100-100

P
ar

tia
l D

ep
en

de
nc

e

ASPECT

One Predictor Dependence For
PA = 1

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

100 200 300 400 500

P
ar

tia
l D

ep
en

de
nc

e

PPT_08

One Predictor Dependence For
PA = 1

b

a c

d

Fig. 2 Single variable plots as obtained by model 12 (best model, as

selected by highest accuracy metric): thresholds of the most important

variables used for predicting the habitat of white spruce (relative

index; positive partial dependence indicates preference, negative

partial dependence indicates avoidance); a influence of aspect

(degrees); b influence of August precipitation (mm); c influence of

mean April temperature (�C 9 10); d influence of elevation (m)

Fig. 3 Mapped distribution

of White spruce in Alaska as

predicted by model 12 (best

model, as selected by highest

accuracy metric)
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the mid-range classes, resulting in an rs of 0.649. Thus, the

best correlation, i.e. the most consistent prediction was

achieved by model 12, having the least departures from the

trendline.

Discussion

This study quantitatively models, predicts and maps for the

first time the distribution of a tree species in a large wil-

derness area, with a high accuracy, using free online tools

and data. As we focus on high prediction accuracy, we will

discuss our methods and results in the context of which

factors might potentially influence accuracy.

Freely available species data

(confirmed presence/absence)

Museum data generally prove to be very useful for

SDM where other data on species locations are sparse

(Stockwell and Peterson 2002, Graham et al. 2004). The

authors argued that often the limitation on high resolution

comes with the environmental variables used as predic-

tors, rather than with the species data (Fig. 1, step 1 and

2). However, as typical for wider parts of Alaska, 85% of

the museum data we used came with an inherent location

error of c. 3,615 km, whereas most of our predictors

(elevation, aspect, slope with 1 km, climate data with

2 km cell size) were much more accurate. Effect of

location error can be reduced by choosing an appropriate

modeling technique (Fig. 1, step 3 and 4), such as Tree-

Net, as predictions with boosted regression trees are only

slightly influenced by location errors (Graham et al.

2008). Thus, we suggest that using museum data with

location errors is still an option for broadscale SDMs and

statewide predictions.

Often, museum data tend to be unevenly distributed in

space and time and lacking a relevant research design due

to opportunistic sampling, also referred to as sampling bias

(Stockwell and Peterson 2002; Graham et al. 2004). In our

study, data were more abundant along the roadsystem, and

few data existed elsewhere in the Interior, where white

spruce is assumed to have the center of its range (see also

Kadmon et al. 2004). Sampling bias might have the largest

influence on prediction accuracy that cannot be accounted

for, yet. However, additional information gained by using a

multiparameter ecological approach and by considering

interactions as presented here, should help mitigate

sampling bias.

Resolution and choice of grain size

Cell size (also referred to as grain size) influences the

accuracy of a prediction. If the cell size is too small, a

slightly wrong geographic species location will result in an

association with an environmental variable value of the

neighbouring cell, i.e. with a different habitat (Fig. 1, step

2). If the cell size is too coarse, environmental conditions

might be averaged, that do not provide an ecological

meaning (Guisan et al. 2007). For making predictions for

the entire state of Alaska (Fig. 1, step 4) the cell size used

here (4 km 9 4 km) is fine enough to keep as much

information as possible, but coarse enough for not intro-

ducing a much higher accuracy than the original data (with

location error) provided. It was also found that differences

between species are often higher than between techniques

(Elith et al. 2006), suggesting that grain size might need to

be adjusted to average patch sizes and/or overall range of a

species. This would pose the need of further research on

patch sizes and spatial autocorrelation, which could be

done using remotely sensed data of vegetation cover, or

average or monthly NDVI. However, as well as remote

sensing has proved to be capable of revealing information

on patch sizes of vegetation types, it cannot do so for single

species, yet.
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Fig. 4 Model prediction accuracy. Assessment of the four best-

performing models with Boyce index and Spearman’s rank correla-

tion; a Boyce index (area adjusted frequency index) Fi for each class

of each model; b Spearman’s rank correlation between rank of Fi

value and class of relative occurrence i for each class of each model

(classes along the trendline indicate high model reliability; classes

deviating from the trendline indicate reduced model reliability);

Spearman’s rank correlation coefficient rs = 0.907 (model 6), 0.952

(model 12), 0.905 (model 14), and 0.649 (model 15), respectively
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Predictor variables

Although this model is not meant to be a mechanistic

biological model, some inferences about the ecological

niche can be drawn from the single variable plots (Fig. 2)

and variable ranking (Table 4). Often, climate parameters

are chosen a priori and with a focus on a low number of

variables, including only annual values (e.g. Thompson

et al. 2006) or only values for the growing season (Calef

et al. 2005). As a result climate parameters rarely get tested

against each other for their performance. We found it

important to not exclude any predictors from the beginning,

starting unbiased and virtually uninformed, and therefore

tested first all of the 18 climate parameters, and in various

combinations. This approach is easily possible, as TreeNet

handles large numbers of variables and interactions con-

veniently. All following steps of dropping variables, that

led to model 12 as the best-performing model (see also

Table 3), indicate that the excluded variables be of minor

importance for the distribution of white spruce.

Our results show, that the most important variables are

not necessarily those, which are usually given higher pri-

ority by other investigators and in the literature, such as

mean temperature of the growing season. We found that

taking aspect into account surprisingly increases ROC and

%corr values. The importance of aspect for the type of

microenvironment and thus vegetation distribution was

already stated elsewhere (Van Cleve et al. 1983; Calef

et al. 2005; Huettmann and Diamond 2001 for wildlife

applications). In contrast, using slope as a predictor lowers

%corr values, although topographic slope is often regarded

as important (Van Cleve et al. 1983; Calef et al. 2005).

Latitude and longitude do not cause significant changes in

ROC and %corr values, but help cluster predicted occur-

rences spatially (see also Supplemental Fig. 6 for com-

parison of maps). However, using latitude and longitude as

predictors reinforces sampling bias, because it gives more

weight to areas that were sampled thoroughly and lower

weight to areas with lower sampling effort. Table 3 shows

that permafrost, soil, and surface geology do not help

increase model performance values and thus indicate,

either not to contribute to explaining the distribution of

white spruce, or that these three datasets are not very

suitable for the applied modeling approach. For example,

the soil variable reduced the %corr value by more than

20%, which might be due to a mismatch of data, as this

dataset includes 268 classes and is thus too specific for a

species dataset with 108 presence points. This might result

in a loss of generalization ability. The importance of per-

mafrost, contrarily to our findings, is supported by Van

Cleve et al. (1983), and indirectly by Calef et al. (2005),

who use drainage type as a predictor variable, which

is highly correlated with the persistence of permafrost.

However, both permafrost and drainage might be a func-

tion of elevation, aspect and slope, and thus are already

included in the model.

Predictors found to be important (Table 4), can be used

to ‘‘learn from the data’’, because single variable plots

(Fig. 2a–d) show the quantitative influence of each of the

parameters on the distribution of white spruce (i.e. the

partial dependence of white spruce on the specific param-

eter). Model 12 indicates the preference of white spruce for

aspects ranging from 100� to 250� (Fig. 2a), which is

consistent with (but more detailed than) the general idea of

the typical white spruce habitat on south-facing slopes

(Viereck and Little 2007). Little rainfall in August (total

sum \80 mm) appear to favor the occurrence of white

spruce (Fig. 2b), but we suggest that this variable is rather

an indicator for distance to coast, than an actual climatic

variable. Figure 2c shows the importance of time of

snowmelt, as mean April temperatures above -4�C (it

might be several degrees above zero within the days) help

melt snow and thus provide moisture right at the start of the

growing season. In contrast, mean April temperatures

below -10�C (probably only around zero during the days)

inhibit snow melting and moisture supply, and thus delay

the start of the growing season, making these sites an

unsuitable habitat for white spruce. According to Fig. 2d,

white spruce favors elevations from slightly above 0 m

(mainly along the rivers, where flowing water prevents the

soil from permafrost) to about 1,000 m (highest occurrence

of treeline, e.g. in the Alaska Range), which is, in a broad

sense, consistent with the literature (Viereck and Little

2007).

Model performance

Model performance strongly depends on the choice of

variables and the settings used. The model presented here

should be seen as a first, conservative underestimate of

model performance and accuracy, as there are many other

settings we have not explored in concert, and thus, we

could have missed the very best setting in TreeNet

improving the model generalization and prediction accu-

racy further.

Comparing model results, maps, and accuracy assess-

ments for the best four models, similarities and differences

become evident. Most striking is that model 6 entirely

omitts to predict classes 9 and 10, and model 15 shows high

instability in Boyce indices and a very fluctuating curve for

the spearman’s rank (Fig. 4a, b). Models 12 and 14 obvi-

ously show the highest model stability (Fig. 4a, b). They

only differ in patterns of distribution for different parts of

the state, with model 14 tending to cluster indeces of rel-

ative occurrence within the landscape (Supplemental

Fig. 6), which is likely to be due to including latitude and
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longitude as predictors. These variables stress on the

locations of the confirmed presence points in such a way,

that spatial sample bias is reinforced. Thus, we would

propose the results of model 12 as the most reliable pre-

diction, which is supported by a very high rs.

The slight deviation of model stability for the mid-range

classes would affect about 30% of the state-wide area,

which might be due to the small patch size of lots of spruce

stands. However, the most stable predictions are for the

classes of high relative occurrence, proposing 138,192 km2

of the state-wide area being covered with white spruce,

which is in the same range with values proposed by Labau

and van Hees (1990), who suggest about 121,000 km2.

Quantitative comparisons to other white spruce maps are

difficult, because few maps are published on this topic and

most of them do not provide information on the methods

used (e.g. Pojar and Mackinnon 1994). There are some

areas in Alaska that were predicted by several of our

models to have high potential for white spruce occurrence,

although these areas were not recorded as such yet (e.g.

some regions on the west coast, including offshore islands).

They might have simply been undersampled, or, equally

likely, range limitations, such as competition, disturbance,

local extinction, or barriers to dispersal prevents white

spruce from occurring there (Graham et al. 2004; Barry and

Elith 2006). Only on a small scale, within the predicted

range, e.g. in the westpart of Interior Alaska, values of

relative occurrence are highly variable causing a salt-and-

pepper like distribution of values on the maps. One

explanation we found for this pattern was, that in the boreal

and arctic, high variation in slope, aspect, drainage, postfire

succession stage and vegetation cover results in larger

changes in microenvironment over small distances than in

humid midlatitudes (Van Cleve et al. 1983). It was found

elsewhere that prediction errors might vary across land-

scape, and a call for an advanced model with spatial

weighting was expressed (Fielding and Bell 1997; Fielding

2002), but is technically not available, yet.

Furthermore, we could not consider climatic trends yet,

as our occurrence data span a time period of c. 100 years,

and both temperature and precipitation data are averaging

the period 1961–1990. Same applies for soil and perma-

frost characteristics, as those data were compiled once only

in 1979 and 1965, respectively. However, according to

Masek (2001), field investigations of tree stands at forest-

tundra boundaries showed little indication of stand

response to warming, yet. The boundaries were clearly

mapped from satellite data, but no obvious change was

apparent during the duration of the image time series

(1970–1990th), constraining recent geographical expansion

rates to\200–300 m per century. This might indicate time

lags between forest response and climate change, or it

reflects competition between trees and their surrounding

vegetation (Masek 2001). The relevance of climate vari-

ability in time might also depend on the magnitude and

spatial distribution of climate change. Given these facts, we

decided to start our role-model with a long-term stable

condition, until data with higher temporal resolution

become available.

So far, we have captured the white spruce distribution as

one single, transparent and repeatable formula in a quan-

titative fashion and small binary software code, ready for

digital use, and open for public assessment. As we were

working with data publicly available, it is foreseeable that

more and better data will help us improve our proposed and

publicly available model even further. We would welcome

such efforts.

Suggestions for further research

This study can be used as a baseline for decisions about

where more sampling efforts are needed in the future, as

we have recognized undersampling to have the most severe

impact on our model predictions. Model performance is

furthermore dependent on variables such as fire history (fire

intensity, extent and frequency; Rupp et al. 2001; Calef

et al. 2005), which will be important for delineating

deciduous versus coniferous forest, and to define white

spruce versus black spruce (P. mariana) habitats (Calef

et al. 2005). Knowledge about dynamic dispersal, e.g. life

history, seed production and seed release applied in a

spatially explicit manner (as already used by Rupp et al.

(2001) on a smaller scale), as well as information on tree

pests, such as the spruce budworm (Choristoneura occi-

dentalis), to account for the probability of local extinction

will surely improve model performance. Still, it will be the

potential niche that is modeled by using this algorithm,

rather than the actual niche, unless competition is included

as a variable, e.g. by applying a plant community model

that accounts for interaction between different species

(Ferrier et al. 2002; Ferrier and Guisan 2006; Zimmermann

and Kienast 1999).

Seeking for a balance between habitat protection, con-

servation and recreation, and potential timber and fuel

supply can only be successful with detailed knowledge

about the potential niche of a species and its spatial dis-

tribution within the landscape, as provided here. This

model also offers itself as a baseline for assessing land-use

change or changes in species ranges due to climate change

(Leathwick et al. 1996; Graham et al. 2004; Prasad et al.

2007-ongoing, Huettmann et al. unpublished), as it could

potentially be modeled backward and forward in time. It

would also be valuable to apply this model to and obtain

maps for other tree species. Furthermore, for forestry and

timber volume prediction purposes, this model could be

adjusted by using tree volume data instead of presence/

1726 Polar Biol (2009) 32:1717–1729
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absence for model calibration, or by linking the index of

relative occurrence with timber volume. Definitely, this

will affect forest management decisions, especially when

pursuing sustainable forest management.

In this study, we operated data primarily in ArcGIS.

However, there are options of exclusively using free soft-

ware, such as GRASS GIS, which is applicable to geospatial

data management and analysis, image processing, graphics/

maps production, spatial modeling, etc. Further exploration

of these options for modeling would help provide important

tools for a broader research community. Without availabil-

ity of high-quality data (Open access) accurate predictive

modeling as presented here would not have been possible.

Using these data and applying non-invasive methods helps

preserve wilderness areas without disturbing them. Making

model results publicly available helps connect scientists,

resource managers, policy makers, and communities and

shall enhance collaborative planning and management.
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